1 First-Order ODEs

1.1 Concepts

1. Integrating factors is for linear, first-order differential equations. It is of the form

$$
y^{\prime}+P(t) y=Q(t)
$$

To solve this, we multiply the equation by the integrating factor $I(t)=e^{\int P(t) d t}$. Then we can calculate that $I^{\prime}(t)=I(t) P(t)$ and

$$
(I(t) y)^{\prime}=I(t) y^{\prime}+I^{\prime}(t) y=I(t) y^{\prime}+I(t) P(t) y=I(t)\left(y^{\prime}+P(t) y\right)=I(t) Q(t)
$$

Taking the integral gives us

$$
I(t) y=\int I(t) Q(t) d t \Longrightarrow y=\frac{1}{I(t)} \int I(t) Q(t) d t
$$

2. Separable equations is for first-order differential equations which can be separated. It is separable if we can write it of the form

$$
y^{\prime}=f(y) g(t)
$$

We write $y^{\prime}=\frac{d y}{d t}$ and split it to get

$$
\int \frac{d y}{f(y)}=\int g(t) d t
$$

If $f(y)$ is a polynomial, we use partial fractions to integrate the left side. There are also solutions gotten by solving $f(y)=0$.

1.2 Problems

3. True False We cannot use the method of separable equations on $y^{\prime}=e^{y+t}$ because it involves a sum of y and t.
4. True False If we can use the method of separable equations, we must be able to write $y^{\prime}=(a y+b) f(t)$ for a linear polynomial in terms of y.
5. True False The equation $y^{\prime}=y+t$ is not separable and so we do not know how to solve it.
6. Find the solution of $y^{\prime}+2 x y=2 x$ with $y(0)=0$.
7. Find the general solution to $y^{\prime}-\frac{y}{x+1}=(x+1)^{2}$.
8. Find the solution to $\frac{d y}{d t}=2 y+3$ with $y(0)=0$.
9. Find the solution to $y^{\prime} e^{y}=2 t+1$ with $y(1)=0$.
10. Solve the IVP $y^{\prime}=t e^{t}$ with $y(0)=0$.
11. Solve the IVP $y^{\prime}=\frac{1}{t \ln t}$ with $y(e)=0$.
